44 research outputs found

    Spectroscopic detection of CIV in a galaxy at z=7.045: Implications for the ionizing spectra of reionization-era galaxies

    Full text link
    We present Keck/MOSFIRE observations of UV metal lines in four bright gravitationally-lensed z~6-8 galaxies behind the cluster Abell 1703. The spectrum of A1703-zd6, a highly-magnified star forming galaxy with a Lyman-alpha redshift of z=7.045, reveals a confident detection of the nebular CIV emission line (unresolved with FWHM < 125 km/s). UV metal lines are not detected in the three other galaxies. At z~2-3, nebular CIV emission is observed in just 1% of UV-selected galaxies. The presence of strong CIV emission in one of the small sample of galaxies targeted in this paper may indicate hard ionizing spectra are more common at z~7. The total estimated equivalent width of the CIV doublet (38 A) and CIV/Lyman-alpha flux ratio (0.3) are comparable to measurements of narrow-lined AGNs. Photoionization models show that the nebular CIV line can also be reproduced by a young stellar population, with very hot metal poor stars dominating the photon flux responsible for triply ionizing carbon. Regardless of the origin of the CIV, we show that the ionizing spectrum of A1703-zd6 is different from that of typical galaxies at z~2, producing more H ionizing photons per unit 1500A luminosity and a larger flux density at 30-50 eV. If such extreme radiation fields are typical in UV-selected systems at z>7, it would indicate that reionization-era galaxies are more efficient ionizing agents than previously thought. Alternatively, we suggest that the small sample of Lyman-alpha emitters at z>7 may trace a rare population with intense radiation fields capable of ionizing their surrounding hydrogen distribution. Additional constraints on high ionization emission lines in galaxies with and without Lyman-alpha detections will help clarify whether hard ionizing spectra are common in the reionization era.Comment: 11 pages, 6 figures, submitted to MNRA

    Hierarchical Triggering of Star Formation by Superbubbles in W3/W4

    Full text link
    It is generally believed that expanding superbubbles and mechanical feedback from massive stars trigger star formation, because there are numerous examples of superbubbles showing secondary star formation at their edges. However, while these systems show an age sequence, they do not provide strong evidence of a causal relationship. The W3/W4 Galactic star-forming complex suggests a three-generation hierarchy: the supergiant shell structures correspond to the oldest generation; these triggered the formation of IC 1795 in W3, the progenitor of a molecular superbubble; which in turn triggered the current star-forming episodes in the embedded regions W3-North, W3-Main, and W3-OH. We present UBV photometry and spectroscopic classifications for IC 1795, which show an age of 3 - 5 Myr. This age is intermediate between the reported 6 - 20 Myr age of the supergiant shell system, and the extremely young ages (10^4 - 10^5 yr) for the embedded knots of ultracompact HII regions, W3-North, W3-Main, and W3-OH. Thus, an age sequence is indeed confirmed for the entire W3/W4 hierarchical system. This therefore provides some of the first convincing evidence that superbubble action and mechanical feedback are indeed a triggering mechanism for star formation.Comment: 10 pages, 6 figures; accepted to the Astronomical Journal. Figure 2 included in this submission as JPE

    Keck Spectroscopy of Lyman-break Galaxies and its Implications for the UV-continuum and Ly_alpha Luminosity Functions at z>6

    Full text link
    We present Keck spectroscopic observations of z>6 Lyman-break galaxy (LBG) candidates in the Subaru Deep Field (SDF). The candidates were selected as i'-dropout objects down to z'=27 AB magnitudes from an ultra-deep SDF z'-band image. With the Keck spectroscopy we identified 19 LBGs with prominent Ly_alpha emission lines at 6< z < 6.4. The median value of the Ly_alpha rest-frame equivalent widths (EWs) is ~50 A, with four EWs >100 A. This well-defined spectroscopic sample spans a UV-continuum luminosity range of -21.8< M_{UV}<-19.5 (0.6~5 L*_{UV}) and a Ly_alpha luminosity range of (0.3~3) x 10^{43} erg s^{-1} (0.3~3 L*_ {Ly_alpha}). We derive the UV and Ly_alpha luminosity functions (LFs) from our sample at ~6.2 after we correct for sample incompleteness. We find that our measurement of the UV LF is consistent with the results of previous studies based on photometric LBG samples at 5<z<7. Our Ly_alpha LF is also generally in agreement with the results of Ly_alpha-emitter surveys at z~5.7 and 6.6. This study shows that deep spectroscopic observations of LBGs can provide unique constraints on both the UV and Ly_alpha LFs at z>6.Comment: 14 pages, 7 figures, accepted for publication in Ap

    Cold Mode Gas Accretion on Two Galaxy Groups at z∌\sim2

    Full text link
    We present Keck Cosmic Web Imager (KCWI) integral field spectroscopy (IFS) observations of rest-frame UV emission lines Lyα\rm Ly\alpha, C IV λλ\lambda \lambda 1548 \AA, 1550\AA and He II 1640 \AA observed in the circumgalactic medium (CGM) of two z=2z=2 radio-loud quasar host galaxies. We detect extended emission on 80-90 kpc scale in Lyα\rm Ly\alpha in both systems with C IV, and He II emission also detected out to 30-50 kpc. All emission lines show kinematics with a blue and redshifted gradient pattern consistent with velocities seen in massive dark matter halos and similar to kinematic patterns of inflowing gas seen in hydrodynamical simulations. Using the kinematics of both resolved Lyα\rm Ly\alpha emission and absorption, we can confirm that both kinematic structures are associated with accretion. Combining the KCWI data with molecular gas observations with Atacama Large Millimeter/submillimeter Array (ALMA) and high spatial resolution of ionized gas with Keck OSIRIS, we find that both quasar host galaxies reside in proto-group environments at z=2z=2. We estimate 1−6×10101-6\times10^{10}M⊙_\odot of warm-ionized gas within 30-50 kpc from the quasar that is likely accreting onto the galaxy group. We estimate inflow rates of 60-200 M⊙_\odotyr−1^{-1}, within an order of magnitude of the outflow rates in these systems. In the 4C 09.17 system, we detect narrow gas streams associated with satellite galaxies, potentially reminiscent of ram-pressure stripping seen in local galaxy groups and clusters. We find that the quasar host galaxies reside in dynamically complex environments, with ongoing mergers, gas accretion, ISM stripping, and outflows likely playing an important role in shaping the assembly and evolution of massive galaxies at cosmic noon.Comment: 24 pages, 11 figures, 6 tabes. Accepted for publication in MNRA

    Infrared Galaxies in the Field of the Massive Cluster Abell S1063: Discovery of a Luminous Kiloparsec-Sized HII Region in a Gravitationally Lensed IR-Luminous Galaxy at z=0.6z=0.6

    Get PDF
    Using the Spitzer Space Telescope and Herschel Space Observatory, we have conducted a survey of infrared galaxies in the field of the galaxy cluster Abell S1063 (AS1063) at z=0.347z=0.347, which is one of the most massive clusters known and a target of the HST CLASH and Frontier-Field surveys. The Spitzer/MIPS 24 ÎŒ\mum and Herschel/PACS & SPIRE images revealed that the core of AS1063 is surprisingly devoid of infrared sources, showing only a few detectable sources within the central r∌1â€Č\sim1^{\prime}. There is, however, one particularly bright source (2.3 mJy at 24 ÎŒ\mum; 106 mJy at 160 ÎŒ\mum), which corresponds to a background galaxy at z=0.61z=0.61. The modest magnification factor (4.0×\times) implies that this galaxy is intrinsically IR-luminous (LIR=3.1×1011 L⊙_{\rm IR}=3.1\times10^{11}\ \rm L_{\odot}). What is particularly interesting about this galaxy is that HST optical/near-infrared images show a remarkably bright and large (1 kpc) clump at one edge of the disk. Our follow-up optical/near-infrared spectroscopy shows Balmer (Hα\alpha-H8) and forbidden emission from this clump ([OII] λ\lambda3727, [OIII] λλ\lambda\lambda4959,5007, [NII] λλ\lambda\lambda6548,6583), indicating that it is a HII region. The HII region appears to have formed in-situ, as kinematically it is part of a rotating disk, and there is no evidence of nearby interacting galaxies. With an extinction correction of AV=1.5_{\rm V}=1.5 mag, the star formation rate of this giant HII region is ∌\sim10 M⊙_{\odot} yr−1^{-1}, which is exceptionally large, even for high redshift HII regions. Such a large and luminous HII region is often seen at z∌2z\sim2 but quite rare in the nearby Universe.Comment: Accepted for publication in the Astrophysical Journal. 29 pages, 15 figure

    The InfraRed Imaging Spectrograph (IRIS) for TMT: photometric precision and ghost analysis

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument for the Thirty Meter Telescope (TMT) that will be used to sample the corrected adaptive optics field by NFIRAOS with a near-infrared (0.8 - 2.4 ÎŒ\mum) imaging camera and Integral Field Spectrograph (IFS). In order to understand the science case specifications of the IRIS instrument, we use the IRIS data simulator to characterize photometric precision and accuracy of the IRIS imager. We present the results of investigation into the effects of potential ghosting in the IRIS optical design. Each source in the IRIS imager field of view results in ghost images on the detector from IRIS's wedge filters, entrance window, and Atmospheric Dispersion Corrector (ADC) prism. We incorporated each of these ghosts into the IRIS simulator by simulating an appropriate magnitude point source at a specified pixel distance, and for the case of the extended ghosts redistributing flux evenly over the area specified by IRIS's optical design. We simulate the ghosting impact on the photometric capabilities, and found that ghosts generally contribute negligible effects on the flux counts for point sources except for extreme cases where ghosts coalign with a star of Δ\Deltam>>2 fainter than the ghost source. Lastly, we explore the photometric precision and accuracy for single sources and crowded field photometry on the IRIS imager.Comment: SPIE 2018, 14 pages, 14 figures, 4 tables, Proceedings of SPIE 10702-373, Ground-based and Airborne Instrumentation for Astronomy VII, 10702A7 (16 July 2018
    corecore